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Introduction

Prion diseases are transmissible and incurable neurodegenerative disorders of humans and

animals. Similar to other neurodegenerative disorders, such as Alzheimer’s disease and Parkin-

son’s disease, prion diseases are characterized by protein aggregation in the central nervous

system (CNS). The key molecular event in prion disease is the conformational conversion of

the cellular prion protein, PrPC, into a misfolded and aggregated conformer, PrPSc, which tem-

plates further PrPC misfolding [1]. Although this same protein misfolding event occurs in all

prion diseases, affected individuals expressing identical PrPC sequences can exhibit strikingly

heterogeneous clinical and pathological phenotypes. These phenotypic differences have been

linked to distinct PrPSc conformations, known as strains, yet the source of prion strain diver-

sity is incompletely understood.

One potential contributor to strain diversity lies in the posttranslational modifications

(PTMs) on PrPC, which add a layer of structural complexity to an otherwise highly conserved

protein. PrPC is posttranslationally modified by the covalent linkage of (i) 0 to 2 N-linked gly-

cans at positions 181 and 197 (human PrP) and (ii) a glycosylphosphatidylinositol (GPI) moi-

ety, which anchors PrPC in the outer leaflet of the plasma membrane [2,3]. The N-linked

glycans on PrPC are branched [bi- (51%), tri- (32%), or tetra-antennary (17%)] and terminally

sialylated, predominantly via alpha 2,6 linkages [4–6].

While necessary for regulating protein interactions and function, PTMs can profoundly

modulate the pathogenesis of neurodegenerative diseases. For example, aberrant hyperpho-

sphorylation of tau protein leads to tau detachment from microtubules and fibrillization into

neurofibrillary tangles, a pathologic hallmark of Alzheimer’s disease. Prion diseases are no dif-

ferent, and the presence of PrP PTMs can markedly alter both the disease phenotype and

transmission barrier. Here we explore how PrP PTMs impact prion conversion, cross-species

transmission, the neuroinflammatory response, and PrP interaction with cofactors.

How do PrP PTMs affect prion aggregate assembly, spread, and

cell tropism?

The GPI anchor on PrP has a particularly profound impact on prion pathogenesis. In a land-

mark study, transgenic mice engineered to express GPI-anchorless PrPC were inoculated with

infectious prions [7]. Instead of the typical diffuse parenchymal deposits in the brain, the mice

developed fibrillar extracellular amyloid exclusively in and around blood vessels similar to
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cerebral amyloid angiopathy, suggesting that removing the cellular tether enables PrP to transit

through the interstitial fluid and subsequently assemble into perivascular fibrils. Moreover,

GPI-anchorless prions circulated at high concentrations in the blood and accumulated system-

ically with an unusually broad tissue distribution that included adipose tissue, colon, and

heart, even leading to a restrictive amyloid cardiomyopathy similar to certain systemic amy-

loidoses (transthyretin or immunoglobulin light chain amyloidosis) [8,9]. Interestingly, despite

the high circulating prion titers, these fibril-forming prions spread poorly from peripheral

entry sites into the CNS, quite unlike the rapid CNS entry of their GPI-anchored counterparts

[10]. These observations suggest that the GPI anchor on PrP may limit fibril elongation and

aggregate size and thereby impact the efficiency of spread through the peripheral nervous sys-

tem and CNS, potentially occurring by axonal transport.

An unresolved question is how do GPI-anchorless prions cause neurodegeneration in the

absence of membrane-bound PrPC? Although neuronal PrPC expression is required for prion-

induced neurotoxicity [11], GPI-anchorless PrP-expressing mice succumb to GPI-anchorless

prion infection with approximately the same incubation period as wild-type mice [12]. This

finding intriguingly illustrates that membrane-anchored PrPC is not required for prion-

induced neurodegeneration. Whether neurotoxic signaling occurs through PrP–cell mem-

brane protein interactions extracellularly in trans, or intracellularly, or whether another mech-

anism underlies the toxicity remains to be determined.

Compared with animal models, patients developing Gerstmann–Sträussler–Scheinker dis-

ease (GSS) due to nonsense mutations in PRNP, for example, those encoding Q145X, Q160X,

or Q163X develop GPI-anchorless fibrils that assemble as parenchymal amyloid plaques, vas-

cular amyloid, or both [13]. These GSS cases show mild to no associated spongiform change in

the brain [13,14], possibly due to exclusively extracellular prion conversion. Typically, the age

of onset is young (third to fourth decade), and the disease course is prolonged (greater than 3

years) [13]. In contrast, genetic prion disease caused by GPI-anchorless near full-length PrPSc

(Q226X) [15] is characterized by a rapid disease course and vascular amyloid, similar to the

rapid course and vascular amyloid observed in the prion-infected GPI-anchorless PrP-express-

ing mice [12], illustrating how the length of the aggregating protein impacts the disease course

and cellular targets.

Extensive study of the PrP glycans has revealed that the glycans can also markedly impact

prion assembly pathways and the disease phenotype. Interestingly, abolishing both glycan

attachment sites (through altering the PrP amino acid sequence) increases (i) spongiform

degeneration, possibly due to intracellular conversion of unglycosylated, GPI-anchored PrP,

and (ii) parenchymal plaque formation (for prions that convert A-disintegrin-and-metallopro-

teinase domain-containing protein 10 (ADAM10)-cleaved PrP, as 10% to 15% of PrPC is

ADAM10-cleaved) [16] (Fig 1). In contrast, the addition of a glycan instead promotes oligo-

mer formation; even plaque-forming prions switch to predominantly oligomeric prions and

show a profound increase in prion spread from extraneural organs into the CNS [16,17]. Thus,

by eliminating either the GPI-anchor or the N-linked glycan attachment sites, PrP shows an

increased tendency to assemble into fibrillar plaques. Establishing how the glycans and GPI

anchor impact particle size and influence entry and spread into and through the CNS would

be an interesting avenue for future studies.

How do PrP PTMs impact neuroinflammation in prion disease?

Terminal sialic acid residues on cell surface proteins and lipids contribute to a healthy mam-

malian sialoglycocalyx, enabling the immune system to differentiate “self” from “nonself.”

Apoptotic or aging cells experience a decrease in the sialic acid content of the glycocalyx,
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leading to the activation of microglia and macrophages [18]. As an extracellular glycoprotein,

PrP—with terminal sialic acid residues on N-linked glycans—is particularly well-suited to acti-

vate microglia. In this vein, Srivastava and colleagues showed that PrPSc purified from prion-

infected brain triggers a pro-inflammatory response when added to cultured BV2 microglial

cells, and this response was even stronger when adding PrPSc lacking terminal sialic acids [19].

In vivo studies have shown that the astrocytic response to prion infection varies by brain

region and does not strongly correlate with PrPSc deposition; however, reactive microgliosis

does correlate with PrPSc deposition in mice [20] and humans [(for type 1 sporadic Creutz-

feldt–Jakob disease (sCJD)] [21]. Of note, PrPSc sialylation pattern and levels vary by brain

region and are controlled by expression of various sialyltransferase enzymes [22]. Lower sialy-

lation status of PrPSc may therefore be at least partially responsible for instigating more pro-

inflammatory responses from microglia in brain regions with lower sialyltransferase expres-

sion [22]. Collectively, these studies support a testable hypothesis in which lower levels of sialy-

lated PrPSc further activate neuroinflammatory cascades and may provide an explanation for

the more severe reactive microgliosis observed with type 1 versus type 2 sCJD [21].

How do PrP PTMs impact prion conversion and cross-species

prion transmission?

Prion conversion requires the interaction of PrPSc with PrPC for template-assisted misfolding,

which is modulated by (i) host–recipient PrP amino acid sequence similarity and (ii) the prion

Fig 1. Model of how PrP PTMs may impact HS-mediated prion conversion. Prion conversion of GPI-anchored
prions occurs at the cellular membrane or intracellularly within the endolysosomal pathway. GPI-anchored prions bind

inefficiently to HS and form diffuse and small plaque-like aggregates containing a mixture of di-, mono-, and

unglycosylated PrPSc. Prion conversion of GPI-anchorless prions may occur extracellularly, as approximately 10% to

15% of the cellular prion protein (PrPC) is constitutively cleaved from the plasma membrane by ADAM10 [40]. Shed,

ADAM10-cleaved PrPC traffics through the interstitial fluid by bulk flow and binds HS chains in the extracellular

matrix and vascular basement membrane. PrPSc also binds HS; thus, HS potentially facilitates PrPC and PrPSc

interaction and scaffolds assembly (curved arrows). Poorly glycosylated PrP (mono- and unglycosylated) binds to HS

and is enriched in prion fibrils. ADAM10, A-disintegrin-and-metalloproteinase domain-containing protein 10; GPI,

glycosylphosphatidylinositol; HS, heparan sulfate; PrP, prion protein; PrPC, cellular prion protein; PrPSc, misfolded

and aggregated prion protein.

https://doi.org/10.1371/journal.ppat.1009123.g001
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strain. PTMs on PrPC are not required for prion conversion, as shown by prion infection of

mice expressing GPI-anchorless or unglycosylated PrPC [7,23]. However, PrPC glycosylation

can impact conversion in a conformation-dependent manner. For example, in vitro, human

sCJD prions (subtypes 129MM1 and MM2) most efficiently seed unglycosylated PrPC sub-

strates, whereas variant CJD (vCJD) prions preferentially seed glycosylated PrPC substrates

[24], illustrating the profound effect of the PrPSc fold on PrPC glycoform recruitment.

PrP PTMs also modulate cross-species prion transmission. For example, the absence of an

N-linked glycan at residue 196 enabled the transmission of human sCJD (subtype MM2) to

transgenic mice [25], overcoming a well-established human–mouse species barrier [26]. Simi-

larly, the absence of the GPI anchor enabled transmission of mouse prions to human PrP-

expressing mice [27]. This finding is particularly intriguing in light of only subtle conforma-

tional differences between the GPI-anchored and GPI-anchorless versions of the same strain

[28]. Although early studies identified the N-linked glycans as imposing spatial and electro-

static constraints to the PrPC—PrPSc interaction, more recent work directly showed a major

role for the terminal sialic acids; some prion strains converted less sialylated PrPC glycoforms,

whereas other strains converted a diverse array of sialylated glycoforms [29]. These studies

reveal a conformation-specific effect of the negatively charged terminal sialic acids on prion

conversion, including cross-species transmission [29,30].

How do PrP PTMs impact interaction with cofactors?

Cofactors, including RNA, lipids, and polyanions, promote in vitro prion conversion, yet they

are not essential for inducing conversion of recombinant PrPC into infectious PrPSc [31–33].

However, the prion conformation, PrP PTMs, and specific cofactors are tightly intertwined;

recent data shows that the conformation of the PrPSc “seed” determines the cofactor and PrPC

glycoform preferences [34]. We recently found that heparan sulfate (HS), an abundant polya-

nion in the brain, accelerates prion disease by enhancing the conversion and assembly of extra-

cellular, ADAM10-cleaved PrP into parenchymal plaques [35] (Fig 1). Interestingly, the

glycans impair PrP binding to heparin (a sulfated glycosaminoglycan varied), possibly due to

electrostatic repulsion between the anionic glycans and the sulfate groups or by masking a hep-

arin binding domain [36]; di-glycosylated PrPC shows the lowest heparin binding affinity [16].

Consistent with this finding, in mice, di-glycosylated PrPSc showed the least HS bound,

whereas unglycosylated PrPSc showed the most HS bound [35]. Additionally, GPI-anchorless

prion fibrils, which are poorly glycosylated, bind high levels of HS. Taken together, these

results show how the PrP glycans can impede fibril formation, potentially through restricting

PrP binding to anionic cofactors, including HS (Fig 1).

Collectively, these findings have relevance for both sporadic and genetic forms of prion dis-

ease and may help explain the geneses of mixed pathological phenotypes that include both dif-

fuse PrPSc aggregates and plaques [37], for example, sCJD subtype MV2 cases develop synaptic

and plaque-like deposits in the cerebral cortex and Kuru plaques in the cerebellum [38,39].

Given that 10% to 15% of PrPC is carboxyl-terminally truncated just proximal to the GPI

anchor [40], the assembly of GPI-anchorless PrP into HS-rich parenchymal plaques may be

occurring in sporadic disease. Additionally, HS may also contribute to the assembly of GPI-

anchorless PrP in genetic prion disease, as GSS cases develop HS-laden plaques [35]. Future

studies that define the PrP sequences, PTMs, and cofactors bound to prion plaques in human

brain may reveal further insights into the nature and formation of the complex mixed aggre-

gate assemblies in prion disease.

In conclusion, prion-affected individuals vary widely in their clinical progression and

affected brain regions, phenotypic traits that may be modulated by PrP PTMs. Thus,
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understanding how the PTMs influence PrPSc folding, assembly pathways, and cofactor inter-

actions is important for tailoring therapies specific to the disease subtype, for example, by

modulating ADAM10-cleavage or impairing prion binding to HS. Ultimately, determining

how PrP PTMs impact interactions with endogenous cofactors has the potential to advance

the rational design of anti-prion therapies.
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