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Amyloid fibrils share a structural motif 
consisting of highly ordered b-sheets 

aligned perpendicular to the fibril axis.1, 2  
At each fibril end, b-sheets provide a 
template for recruiting and converting 
monomers.3 Different amyloid fibrils 
often co-occur in the same individual, 
yet whether a protein aggregate aids 
or inhibits the assembly of a heterolo-
gous protein is unclear. In prion disease, 
diverse prion aggregate structures, known 
as strains, are thought to be the basis of 
disparate disease phenotypes in the same 
species expressing identical prion protein 
sequences.4-7 Here we explore the interac-
tions reported to occur when two distinct 
prion strains occur together in the central 
nervous system.

Diverse Misfolded Proteins  
in Disease

Protein misfolding and the accumulation 
of highly-ordered, β-sheet rich, insoluble 
aggregates are implicated in a diverse 
group of neurodegenerative diseases, 
including prion, Alzheimer, Parkinson 
and Huntington disease. In aged patients, 
often different aggregated proteins coex-
ist. For example in Alzheimer disease 
(AD), amyloid-β plaques and tau neurofi-
brillary tangles often coexist. Whether the 
co-occurrence of multiple aggregated pro-
teins indicates a failure in shared clearance 
pathways or a fibrillized protein nucleat-
ing a second protein is unclear.

In prion disease, two conformationally 
distinct subtypes of PrPSc, the misfolded 
prion protein, have been shown to co-exist 
in up to 50% of patients with sporadic 
Creutzfeldt-Jakob disease (sCJD).8-12 Each 
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subtype was localized to a particular brain 
region, and the spatial distribution of the 
subtypes did not change due to the pres-
ence of the second subtype. Indeed, the two 
subtypes also differed in their biochemical 
characteristics, including the proteinase-
K resistant core size,11 suggesting that the 
subtypes were structurally different.

In addition to sporadic human prion 
disease, the coexistence of prion strains 
commonly arises when prions cross spe-
cies barriers13,14 and may be due to PrP 
sequence differences between the incom-
ing PrPSc and the host cellular prion pro-
tein, PrPC.15 Sequence mismatches may 
shift the range of newly generated PrPSc 
conformations that can be accommodated 
by the initial seed template. The result-
ing mix of strains has implications for the 
treatment of infectious prion disease, as a 
drug may target only one strain and thus 
enable rarer strains to propagate.16 Strain 
mixtures can also have an impact on the 
pathogenesis, as interference between 
strains can alter prion replication.

Here we review the mechanisms of 
prion strain interference, interactions 
between conformationally distinct prion 
strains and new tools to track protein 
aggregates known as luminescent conju-
gated oligo- or polythiophenes (LCOs or 
LCPs).

Prion Strain Interference

Co-infection of two prion strains can 
result in interference where one prion 
strain extends the incubation period (ip) 
or completely blocks a second, superin-
fecting strain from causing disease.17,18 
Prion interference has been described in 
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polythiophene backbone is nonplanar 
and LCPs are loosely packed, whereas a 
shift toward longer wavelengths suggests 
that the backbone is planar and LCPs are 
tightly packed.39,40 Thus the LCPs provide 
structural insights regarding the morphol-
ogy of bound protein deposits and can 
be used as a complementary technique to 
conventional staining protocols for char-
acterizing protein aggregates.

In vitro, the LCPs bound to recom-
binant protein fibrils of the same protein 
can yield distinct spectral profiles. This 
was shown with recombinant mouse prion 
protein (mPrP) that had been converted 
into two chemically identical types of 
amyloid fibrils using varying conditions 
for fibrillation.41 The two fibril types 
could be distinguished by different PTAA 
emission spectra. The same procedure also 
distinguishes Aβ

1-42
 fibrils grown under 

different conditions in vitro.42

LCPs have been additionally tested on 
brain sections of mice infected with dif-
ferent prion strains.41,43 We applied the 
anionic LCP polythiophene acetic acid 
(PTAA) to frozen brain sections and 
measured different spectral emission sig-
natures depending on the strain. By calcu-
lating ratios of the intensity of the emitted 
light at certain wavelengths, prion aggre-
gates associated with distinct prion strains 
were easily distinguished from each other, 
verifying the usefulness of spectral proper-
ties of LCPs for labeling specific strains. 
PTAA also binds to de novo prion aggre-
gates, which do not stain with thioflavin 
T nor Congo red, indicating that LCPs 
could be used to identify a subset of pro-
tein deposits normally undetectable by 
conventional methods.44

Heterogenic protein aggregates are also 
found in other proteinopathies, such as 
AD or systemic amyloidoses. Upon appli-
cation of several LCPs to transgenic mouse 
models having AD pathology, a striking 
heterogeneity in the characteristic plaques 
composed of the amyloid β (Aβ) peptide 
was identified. LCP staining of Aβ depos-
its in brain tissue sections revealed differ-
ent sub-populations, observed as protein 
deposits with different spectral emis-
sions.42 Furthermore, PTAA could be used 
to spectrally separate Aβ deposits associ-
ated with the Swedish and Arctic muta-
tion as compared to the Swedish mutation 

DY PrPSc each typically localize to the cell 
surface of neurons.32 Together, these in 
vivo data suggest that (1) DY and HY PrPSc 
are competing for a limiting host resource, 
(2) HY and DY prion interference likely 
occurs at the neuronal cell surface and  
(3) an immune response to the DY prions 
is not involved in the interference.

PMCA recapitulates strain interference 
between HY and DY prions in vitro simi-
lar to what is observed in vivo, indicating 
that the competing factors are present in 
this system.27 These in vitro studies sug-
gest that prion strain interference is not 
due to DY PrPSc rapidly converting all of 
the available PrPC to PrPSc. After one round 
of PMCA, PrPSc consistently accumulates 
to higher levels in the HY compared to 
DY seeded reactions, consistent with the 
strain-specific in vivo rates of PrPSc accu-
mulation.27 If DY PrPSc were converting 
all of the available PrPC to PrPSc in the 
PMCA reaction, then DY and HY PrPSc 
abundance would be predicted to be equal. 
A possible explanation is that DY PrPSc 
sequesters PrPC or another required co-
factor (e.g., RNA, glycosaminoglycans), 
rendering it unavailable to HY PrPSc.33-36 
This is consistent with the observation that 
a vast excess of DY PrPSc compared to HY 
PrPSc is required for interference.

LCPs Discriminate Distinct Prion 
Conformations In Vitro and In Vivo

Methods to visualize and track HY and 
DY or other prion strains in tissue sections 
have been limited. Small hydrophobic 
molecules such as thioflavin T (ThT) or 
Congo red have been used to detect pro-
tein aggregates having an extensive cross 
β-pleated sheet conformation. However, 
these conventional dyes are unable to 
distinguish heterogeneous populations 
of aggregated proteins because they are 
sterically rigid. A new class of amyloid 
ligands, the LCPs, consists of a polythio-
phene backbone that freely rotates and 
allows multiple rotational (torsion) angles 
between the thiophene rings.37,38 When 
bound to protein aggregates, the thiophene 
rings lock into a specific planarity and pro-
vide a direct correlation between the LCP 
geometry and the light emitted. Protein-
bound LCPs with maximum emission 
at shorter wavelengths suggests that the 

mice and hamsters infected with a wide 
variety of strains and routes of inoculation 
suggesting that it is a common property of 
prions.18-22 Additionally, interference may 
be involved in the emergence of a domi-
nant strain from a mixture that occurs 
following interspecies transmission.13,23-26 
Interestingly, prion strain interference has 
been recapitulated in vitro using protein 
misfolding cyclic amplification (PMCA).27

Several parameters are known to gov-
ern prion strain interference. First, the 
blocking strain must be infectious in order 
to interfere with the superinfecting strain. 
Treatments that destroy prion infectivity 
eliminate the ability of the blocking strain 
to interfere.28 Second, the blocking-to-
superinfecting strain ratio influences the 
interference, in that the higher the PrPSc 
quantity of the blocking strain, the more 
effectively the ip is prolonged.19,29 In some 
cases, the PrPSc from the superinfecting 
strain becomes undetectable.22,30 Third, 
increasing the interval between exposure 
to the two strains increases the interfer-
ence ability of the blocking strain.17,18,30 
Taken together, these studies suggest 
that replication of the blocking strain is 
required for strain interference to occur.30 
Finally, recent reports have indicated that 
for prion interference to occur, the block-
ing and superinfecting strains must infect 
a common population of neurons.22,30 
Overall, the relative onset of replication of 
interfering strains in a common popula-
tion of neurons is the critical factor that 
determines which prion strain will emerge.

The mechanisms of strain interfer-
ence are beginning to be deciphered in 
studies using the HY and DY strains of 
TME. Animal studies utilizing the sciatic 
nerve route of infection have determined 
that HY and DY prions are transported 
to the same populations of neurons in the 
lumbar spinal cord.31 Inoculation of the 
sciatic nerve with the DY prions prior to 
inoculation with HY completely blocks 
HY from infecting the spinal cord, while 
inoculation of HY prions into the opposite 
sciatic nerve leads to HY readily infecting 
the spinal cord.30 In these animals, the 
only observed difference is that when two 
strains are inoculated into the same sci-
atic nerve, neuronal deposits in the spinal 
cord consist of exclusively DY and lack any 
trace of HY PrPSc. Interestingly, HY and 
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rather than a heterologous protein. This 
colocalization does not indicate any pro-
motion of aggregate formation and is 
consistent with our observations of colo-
calization in the prion strains where there 
was no disease acceleration. Rajan and 
colleagues also studied the aggregation of 
unrelated proteins expressed in the same 
cell. Here they found that the aggregates 
were homogenous, indicating that aggre-
gation of single proteins was exquisitely 
specific.48

Conclusion

Prion strain mixtures are common in 
certain sporadic and infectious prion 
diseases, as most recently described in 
chronic wasting disease (CWD) in mule 
deer.15 Yet detecting a second strain can 
be a challenge since one prion strain may 
mask a second strain in western blot or 
immunohistochemical assays. Although 
prion strains have been shown to interfere 
or aggregate with a second strain, other 
interactions may be possible, such as the 
formation of heterotypic fibrils. Staining 
with the conformationally sensitive LCPs 
presents a powerful technique for explor-
ing the range of possible interactions 

scaffold, although hybrid plaques did not 
accelerate the mNS infection. We then 
investigated whether the hybrid plaques 
were composed of homotypic fibrils of one 
strain or heterotypic fibrils containing both 
strains. If the fibrils were homotypic, we 
would expect that on second passage, we 
would again observe the hybrid plaques 
containing each strain with its character-
istic PTAA emission spectra. This was 
indeed the case as hybrid plaques were 
again observed. Thus, with three different 
strain combinations, interactions varied 
from strain inhibition (mNS/mBSE) no 
interaction (mBSE/mCWD), or hybrid 
plaque formation (mCWD/mNS) (Fig. 1).

Specificity of Aggregation Among 
Other Misfolded Proteins

Interactions between pre-formed aggre-
gates have also been studied in yeast 
prions.46,47 Yeast that propagate two dif-
ferent protein aggregates frequently 
showed aggregate co-localization, even 
when the proteins did not seed the fibril-
lization of each other. Although the pro-
teins co-localized, they did not seem to  
coassemble, indicating that the proteins 
more efficiently converted a homologous 

in the amyloid precursor protein (APP), 
indicating that different point mutations 
of the amyloidogenic protein can give rise 
to various morphologies of protein depos-
its. The spectral profile from PTAA was 
also used for the structural sub-typing of 
systemic amyloidoses and similar to obser-
vations in earlier studies of prion deposits, 
some tissue samples exhibit mixtures of 
amyloid having separate PTAA spectra.45

LCPs in Studies  
of Prion Strain Mixtures

We recently characterized interactions 
that occur between prion strains in vivo 
using the LCPs.40 Three prion strains were 
used that had been previously character-
ized in mice histologically and biochemi-
cally: mouse-adapted chronic wasting 
disease (mCWD), natural sheep scrapie 
(mNS) and bovine spongiform encepha-
lopathy (mBSE). Each individual strain 
and mixtures of two strains were intrace-
rebrally inoculated into mice. The strain 
mixture consistently led to a delay in the 
incubation period as compared to that of 
the most rapid strain. Nevertheless, the 
lesion profile revealed that the affected 
regions essentially encompassed the com-
bined sites of the two individual strains. 
The only exception was the mNS/mBSE 
strain mixture, in which interference 
occurred in a single region, the hippocam-
pus, where mNS no longer accumulated.

To determine whether strains were 
colocalizing, frozen brain sections from 
mice infected with a mixture were stained 
with PTAA. The mCWD/mBSE mix-
ture showed no evidence of interaction 
between aggregates, although both strains 
were present as seen by their characteristic 
plaque morphologies and the PTAA emis-
sion spectra.

PTAA bound to mCWD plaques 
emits light with a maximum intensity at  
~565 nm and appears yellow, whereas 
PTAA bound to mNS emits light with a 
maximum intensity at ~595 and appears 
red. Surprisingly, the mCWD/mNS 
mixture led to the formation of hybrid  
plaques, wherein the plaque core was con-
sistently composed of yellow mCWD, bor-
dered by the red aggregates of mNS. The 
existence of the mCWD plaques may have 
facilitated mNS deposition by providing a 

Figure 1. This schematic depicts interactions that have occurred in the brain among distinct prion 
strains as reported in reference 41.
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between protein aggregates. Finally, the 
LCPs can provide insights into the struc-
tural arrangements of protein aggregates 
and can be used to track aggregates in vivo 
in real time.49
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