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Abstract
Recent studies in animal models demonstrate that certain mis-

folded proteins associated with neurodegenerative diseases can sup-

port templated misfolding of cognate native proteins, to propagate

across neural systems, and to therefore have some of the properties

of classical prion diseases like Creutzfeldt-Jakob disease. The Na-

tional Institute of Aging convened a meeting to discuss the implica-

tions of these observations for research priorities. A summary of the

discussion is presented here, with a focus on limitations of current

knowledge, highlighting areas that appear to require further investi-

gation in order to guide scientific practice while minimizing poten-

tial exposure or risk in the laboratory setting. The committee

concluded that, based on all currently available data, although neu-

rodegenerative disease-associated aggregates of several different

non-prion proteins can be propagated from humans to experimental

animals, there is currently insufficient evidence to suggest more than

a negligible risk, if any, of a direct infectious etiology for the human

neurodegenerative disorders defined in part by these proteins. Given

the importance of this question, the potential for noninvasive human

transmission of proteopathic disorders is deserving of further

investigation.
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INTRODUCTION
Recent data raise the possibility that classical neurode-

generative diseases share characteristics with prion diseases
(1–13). If so, this would be of scientific interest, have potential
importance for therapeutic approaches, and, in the extreme
case, have public health considerations. A group was con-
vened by the National Institute of Aging to discuss the evi-
dence regarding this hypothesis and the types of remaining
data needed to ascertain research priorities toward understand-
ing this phenomenon better.

The characteristics of “prion-like behavior” include (1)
evidence for protein-based templated misfolding, leading to
amplification of a misfolded species and the formation of pro-
teopathic seeds (this nomenclature has been adopted in accord
with a similar conference held among European experts and
will be used here as it remains agnostic to disease classifica-
tion [14]); (2) capacity for “transmissibility” between individ-
uals of the same species and (less commonly) across species,
with species barriers often present; (3) generally the existence
of polymorphic “strains” defined as having different conform-
ers that lead to differences in neuropathological and clinical
phenotypes; (4) the ability to “propagate” or spread along with
neural systems which may translate into clinical progression
of disease; and (5) striking stability of pathologic aggregates,
often with marked protease resistance. We briefly review
these issues for the proteopathic seeds that have been de-
scribed for amyloid-b (Ab) and tau, associated with Alzheimer
disease (AD), other tauopathies, and for a-synuclein, associ-
ated with Parkinson disease (PD), Lewy body disease (LBD),
and multiple system atrophy (MSA). Given the overlapping
features of proteopathic seeds between prion diseases (Creutz-
feldt-Jakob disease, fatal familial insomnia, etc.) and other
neurodegenerative protein aggregation disorders, it is reason-
able to consider whether research biohazard and clinical safety
measures need to be aligned across some or all of these dis-
eases. There is experimental evidence that each of these mis-
folded proteins in neurodegenerative diseases can behave as
proteopathic seeds, but it is critical to understand whether the
“potency” of any of these proteopathic seeds is sufficient to
pose a risk in laboratory, clinical, or public health contexts.
For these reasons, it is essential to address questions about the
mechanistic biology of protein aggregation, cell-to-cell trans-
mission and then, by extension, potential broader consequen-
ces for investigators, patients, and healthcare providers. We
close by focusing on a series of recommendations regarding
research risk, experimental data needed for guidance, and
comment on the adequacy of “universal precautions” for safe-
guarding both patients and providers.

AMYLOID BETA
Amyloid beta (Ab) is a small amphipathic peptide that

accumulates as amyloid plaques in the neuropil in AD. In vi-
tro, it readily fibrillizes, and in vivo, in mouse experiments,

plaques can be seen to nucleate and grow quite quickly (15).
Ab fibrils are polymorphic in appearance and biochemical
characteristics, with various lengths and morphological char-
acteristics. Advanced biophysical examination of Ab derived
from brain tissue of patients with AD shows polymorphic
structures (16). There is a typical distribution of plaques in
AD brains, with brain areas that are connected among the
“default network” typically affected early; in animal models,
there has also been some demonstration of “propagation”
along neural systems (17, 18) suggesting some axonal trans-
port of seeds that ultimately lead to extracellular deposits.

Injection of Ab seeds derived from human AD into a
mouse leads to the development of plaques in mice (if they ex-
press a human amyloid precursor protein sequence), suggest-
ing to some extent a “species barrier” given the differences in
sequence between human and mouse Ab. Recent data suggest
that only minute quantities of the “seed” are necessary and
that the seed can be introduced directly into the CNS, or pe-
ripherally (even intraperitoneally [19]) with consequent devel-
opment of plaques in the brain months later in vulnerable mice
(20). Even wires soaked in Ab containing brain homogenate
can initiate and propagate amyloid plaques after intracerebral
inoculation in susceptible mice (21).

The clearest evidence for potential transmission to
humans comes from observations that some cohorts of indi-
viduals exposed to cadaveric-derived human growth hormone
demonstrated subsequent emergence of amyloid deposition at
unexpectedly younger ages (22). Although this finding was
consistent with that in another cohort of growth hormone
recipients, no deaths attributable to AD were found in a long-
term mortality study of the cohort (23, 24). Additionally, there
are suggestive data from recipients of dura mater allografts
(25–28), as well as in individuals who underwent neurosurgi-
cal procedures as children or young adults, developed vascular
wall deposition of Ab in the form of cerebral amyloid angiop-
athy (CAA) and hemorrhage several decades later (8, 29, 30).
However, these cases are exceedingly rare, and there is a
counter-argument that the “trauma” associated with graft
placement has been put forward as a cause of amyloid deposi-
tion (31). Neither cadaveric-derived human growth hormone
nor dura matter allografts are still manufactured for clinical
use, which limits any potential for future exposure risk. Ongo-
ing surveillance of exposed individuals remains important.

TAU
Strong data also suggest that tau becomes misfolded in

neurodegenerative diseases including progressive supranu-
clear palsy (PSP), some forms of frontotemporal dementia,
chronic traumatic encephalopathy, and, most commonly, AD
(31–37). The consequences of misfolding in each of these dis-
eases are the accumulation of intracytoplasmic aggregates that
can be propagated to cells and to animals (38–41). Tau aggre-
gates across these disorders are distinctly misfolded and com-
posed of distinct protein variants such that the distinctive
lesions differ in their biochemistry (e.g. isoforms of tau and
patterns of hyperphosphorylation), cells affected, the morphol-
ogy at the light microscopy, electron microscopy (EM), and,
recently, cryo-EM appearance. Thus, tau adopts different
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stable conformations, consistent with the notion of “strains” as
may be seen in genetic and phenotypic variation, but also ar-
guably with the concept of genetic and phenotypic diversity,
such as seen with different environmental stimuli (39, 42, 43).

Since tau is expressed predominantly in neurons, rather
than glial cells, the observation of tau aggregates in astrocytes
and oligodendrocyte has been used to support the concept that
release of (likely misfolded) tau from neurons (or oligoden-
droglia [40]) and results in uptake into other cells. The release
of tau from neurons as a naturally occurring phenomenon is
unequivocally supported by the presence of tau in the cerebro-
spinal fluid (CSF). A substantial amount of experimental data
in cell and mouse models shows that neuron-to-neuron trans-
mission of tau is also possible, and, in experimental systems,
can occur on the scale of days to weeks, perhaps even faster.
Strong experimental data in cells and mice also suggest that a
particular type of misfolded tau can “instruct” wild-type tau
molecules to adopt that conformation and engage in templated
misfolding (2, 7, 10, 44–47). Unlike classical prion disease,
there does not appear to be a large amount of sequence specif-
icity in this regard: human P301L tau and wild-type mouse tau
coexist in tau aggregates in transgenic mice, and multiple dif-
ferent isoforms of tau coaggregate in paired helical filaments
in AD while in other disorders, such as PSP, tangles contain
only a single isoform. A substantial amount of data from cell
and mouse models indicates neuron-to-neuron transmission of
tau aggregates, and, in experimental systems, this can occur
on the scale of days to weeks.

In conclusion, current data suggest that inoculation of
misfolded tau derived from human brain tissue into the brain
of an experimental animal (generally one that is overexpress-
ing human tau, often in mutant forms) can lead to a tauopathy-
like picture within months of inoculation, and that this mate-
rial remains bioactive over generations of mice. Current data
in experimental systems suggest that (misfolded) human tau
can be taken up by neurons, is amplified by “corrupting” en-
dogenous human or mouse tau through templated misfolding
and can be transmitted across neural systems to spread
throughout the brain. No current data are available regarding
transmissibility of tau in humans.

a-SYNUCLEIN
Like tau, a-synuclein, a natively unfolded protein,

becomes misfolded and aggregates in cell inclusions and neu-
rites in neurodegenerative diseases including PD, LBD, MSA,
and, not uncommonly, in selected brain regions, in AD. a-Syn-
uclein inclusions may be primarily neuronal as in PD and
LBD, but in MSA, oligodendroglial inclusions are prominent.
The Braak hypothesis suggests that the anatomical distribution
of lesions in PD are linked by connections, perhaps from the
gut, supporting a role for propagation of a-synuclein across
neural systems (48). More direct evidence for a-synuclein
propagation between neurons comes from the striking obser-
vation of a few Lewy bodies in grafted fetal neurons in the
substantia nigra of Parkinson patients, years after the trans-
plant (49, 50). a-Synuclein proteopathic seeds have been im-
plicated in MSA (51–55). Like tau, the specific molecular
misfolding that occurs leads to aggregates that differ in the

cells affected, the morphological shape of aggregates at the
light microscopy, EM, and, recently, cryo-EM levels where fi-
bril polymorphs are observed (56).

Since, under physiological conditions, a-synuclein is
thought to be expressed predominantly in neurons, and not
expressed in glial cells, the observation of a-synuclein aggre-
gates in glia suggests release of (likely misfolded) a-synuclein
from neurons and uptake into other cells, suggesting at least
local propagation. A similar conclusion is drawn from the
presence of a-synuclein aggregates in the engrafted fetal neu-
rons placed for potential treatment of PD, a few years after
grafting (49, 50). Since multiple different aggregated forms of
a-synuclein exist in different diseases, a-synuclein adopts dif-
ferent stable conformations, again consistent with the idea of
“strains” as was discussed above for tau. A substantial amount
of experimental data in cell and mouse models show that neu-
ron to neuron transmission of a-synuclein is also possible,
and, in experimental systems, can occur on a fairly rapid time
scale (days) (57–60).

Artificial recombinant a-synuclein fibrils clearly can
propagate after being injected into experimental animals (61–
64). a-Synuclein derived from human neuropathological con-
ditions appears to be even more potent, and to some extent
replicate the disease phenotype of the brain that the a-synu-
clein was isolated from, with differential patterns of propaga-
tion and inclusions of a-synuclein derived from PD or MSA
(see, e.g. [65]). Unlike classical prion disease, there do not ap-
pear to be strong species barriers for a-synuclein, with human
a-synuclein fibrils causing a-synuclein aggregation in wild-
type mice.

Thus, strong data suggest that misfolded human a-synu-
clein can be taken up by neurons and glial cells, which is am-
plified by “corrupting” endogenous a-synuclein through
templated misfolding and be transmitted across neural systems
to spread throughout the brain. However, direct evidence in
humans suggesting propagation across cells is limited to the
studies of the occurrence of Lewy bodies in fetal neurons in
transplants, and the reasoning that oligodendroglial inclusions
are likely derived from neuronal a-synuclein; however, there
is currently no direct confirmation of human transmission.
Moreover, the idea that PD itself reflects intrinsic vulnerability
of neural systems, rather than a prion-like spread, has been ar-
ticulated (66–68) and provides a counter-point to a strict
“spreading” hypothesis; this argument can in general be ap-
plied to a-synuclein, tau, and Ab.

RESEARCH ISSUES (TISSUE SPECIMENS AND
BIO FLUIDS; CELL CULTURE MODELS; ANIMAL

MODELS), AND COMPARISON TO
PROCEDURES FOR PRION DISEASES

For established prion diseases, there are distinct and
greater requirements for handling for animal models, cell cul-
ture systems, tissue (both human and animal), and biological
fluids in Biosafety level 2 (BL2) facilities (e.g. https://www.
phe.gov/s3/BioriskManagement/biosafety/Pages/Biosafety-
Levels.aspx; https://www.cdc.gov/labs/pdf/CDC-Biosafety-
MicrobiologicalBiomedicalLaboratories-2009-P.PDF), simi-
lar to many other circumstances, although decontamination of
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surfaces and instruments requires special chemicals. Some
institutions may require higher levels of biosafety, especially
in human research settings. Currently, no comparable guide-
lines are in place for neurodegenerative disease tissue speci-
mens, biofluids, cell culture, animal model, or biochemical
studies beyond good laboratory practices, and, for human-
derived specimens, “universal precautions.” While we might
argue that being “overly safe” presents minor disadvantages,
were requirements comparable to prion disease be put in place
for other neurodegenerative disease systems, there could be no-
table operational and financial burden which might constitute
substantial barriers to advancement in the field. Therefore,
such requirements should be recommended only with due con-
sideration about whether current procedures are adequate to
provide protection. For example, simple formaldehyde fixation
does not inactivate proteopathic seeds (69–71), whereas hypo-
chlorous acid appears to be more effective (72). Similarly,
there are distinct and more elaborate processes for handling of
biospecimens and surgical as well as other instruments (endo-
scopes, etc.) from individuals with possible prion disease.
Again, extending similar precautions to individuals with other
neurodegenerative diseases could represent a barrier to care
and treatment, particularly given the far greater incidence of
diseases, such as AD and PD in the aging population along
with the longer prodromal and preclinical phases (years to dec-
ades) for many of these diseases when compared with prion
diseases. Thus, it is important to address the question as to
whether current universal precautions and decontamination/
cleaning methods are adequate to address any transmissibility
risk in neurodegenerative diseases. Finally, returning to the re-
search arena, the laboratory handling, distribution, and poten-
tial exposure to human tissue, and other biospecimens, would
need to be addressed in the same manner.

APPLICATION TO PUBLIC HEALTH, RISK TO
HEALTH PROFESSIONALS, AND INFORMATION

NEEDED FOR PUBLIC POLICY DECISIONS
Importantly, there are little or no clinical data to suggest

“infectivity” or “transmissibility” of tau, a-synuclein, or Ab,
but direct examination in which research focuses on this point
is largely missing. For example, there is no known increased
risk of these disorders among those healthcare professionals
who might be expected to have increased relative exposure,
such as neuropathologists or neurosurgeons, but the data are
largely absent rather than negative. Similarly, no epidemiolog-
ical data suggest that partners or close contacts of affected
individuals are at any higher risk than the general public for
developing their partner’s disease. It was shown that in a series
of cadaveric human growth hormone (hGH) recipients who
died of iatrogenic Creutzfeldt-Jakob disease, none died with
Alzheimer or Parkinson neuropathologic changes (24). In con-
trast, in other series of cadaveric hGH recipients who devel-
oped iatrogenic Creutzfeldt-Jakob disease, some cases did
develop cerebral amyloid angiopathy (22, 23, 73, 74), with
one series suggesting that about half of the cases developed at
least amyloid deposits around cerebral blood vessels. Thus,
the development of amyloid lesions, and the full picture of
AD, may well be dissociated. Together, these data suggest that

the transmissibility of the AD-related proteopathic seeds, at
least in the context of these clinical studies, is less than
Creutzfeldt-Jakob prions. Thus, while no clear data currently
suggest a public health risk to individuals or physicians, this
issue has not been deeply explored.

There are a series of critical questions to be answered
about the transmission process that would need to be answered
to more definitively assess risk:

• infectivity (titer in tissue, biological fluids; infectious unit);
• stability (time, temperature, freezing/fixation);
• inactivation (fixation, be contaminants);
• anatomic distribution of infectivity (brain versus CSF versus

blood versus other tissues); and
• horizontal transmission/environmental exposure.

Issues that require understanding derived from biologi-
cal experiments include greater insight into the molecular
identity of the proteopathic seeds:

• What is the half-life of seeds introduced into animals or cul-
tured cells?

• Can peripheral exposure, under any circumstances (for exam-
ple with disruption of the blood-brain barrier), lead to CNS ac-
cess with subsequent spread of proteopathic seeds?

• Do standard neuropathologic handling methods (fixation, tis-
sue processing, etc.) block bioactivity (69, 75, 76)? Initial data
suggest, for example, that formaldehyde may not be sufficient
for inactivation of proteopathic seeds (53, 69–71).

• What are the stability characteristics of proteopathic seeds?
• How long might proteopathic seeds persist in a host (77),

which would require assessment of cumulative risk rather
than single exposure risk?

When assessing these characteristics of proteopathic
seeds from human tissue, animal and cell culture models, and
synthetic material, it is important to ensure that biological
assays are used for assessment of potency rather than just their
biophysical properties. In addition to the cell-based and ani-
mal transmissibility models noted above, distinct cell-free sys-
tems that use protein conformational changes as measures of
seeding (e.g. RT-QuIC) promise both an ability to discrimi-
nate distinct conformational patterns (65); increased sensitiv-
ity has become available in recent years (10, 72, 78–87).
Optimal assessment of integrity of proteopathic seeds would
employ multiple methods, as methods may differ in their sen-
sitivity and it is not possible to determine a priori how such
sensitivity in a given assay corresponds to exposure risk.

Such information would be critical to more fully assess
potential risk in laboratory settings, and determine if further
measures beyond “universal precautions” and common sense
used with all human autopsy material to prevent exposure to
infectious or toxic materials might be warranted in neurode-
generative disease-focused laboratories or if distinct animal
handling requirements were needed for models of neurodegen-
erative diseases. Issues around the potential broader clinical
and public health concerns raised by proteopathic seeds have
recently been addressed by a European group, which made a
series of proposals based on observations regarding
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transmissibility of Ab from experimental and clinical settings
(14). It remains too early to suggest that comparable
approaches should be followed in the setting of other proteins
that demonstrate comparable biologic potential, although it is
possible that further experimental evidence will guide similar
levels of caution. It also remains a task for the scientific com-
munity to pursue further studies designed to address the out-
standing questions raised above. Information gained from
such studies will help more definitively settle the questions of
whether neurodegenerative diseases can, under any circum-
stances, be communicated via proteopathic seeds person to
person, in either research or clinical settings.
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