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Abstract
Until recently, chronic wasting disease of cervids, the only wildlife prion disease, was believed to
be geographically concentrated to Colorado and Wyoming within the United States. However,
increased surveillance has unveiled several additional pockets of CWD-infected deer and elk in 12
additional states and 2 Canadian provinces. Deer and elk with CWD have extensive aggregates of
PrPSc not only in the central nervous system, but also in peripheral lymphoid tissues, skeletal muscle,
and other organs, perhaps influencing prion shedding. Indeed, CWD is transmitted efficiently among
animals by horizontal routes, although the mechanism of spread is unknown. Genetic polymorphisms
in the Prnp gene may affect CWD susceptibility, particularly at codon 225 (S/F) in deer and codon
132 (M/L) in elk. Since CWD infects free-ranging animals and is efficiently spread, disease
management will be a challenge.

A chronicle of CWD
A prion disease of free-ranging wildlife, chronic wasting disease (CWD) affects mule deer
(Odocoileus hemionus), white-tailed deer (O. virginianus), Rocky Mountain elk (Cervus
elaphus nelsoni) [1], and moose (Alces alces shirasi) [2], all members of the family Cervidae.
CWD was first noted in 1967 within a research facility in Fort Collins, Colorado where captive
mule deer used for nutrition research were reported with a body wasting syndrome [2]. After
more than a decade of uncertainty about the etiology of CWD, pathologists Elizabeth Williams
and Stewart Young recognized the brain lesions as those of a transmissible spongiform
encephalopathy (TSE) in 1978, and CWD was subsequently demonstrated as a prion disease
not only by the classic neuronal perikaryonic vacuoles [3], but also by the accumulation of
aggregated prion protein [4] (Fig. 1) as well as prion infectivity in the brain [5]. In the late 70s
and early 80s, CWD was detected in two zoological collections, in Wyoming and in Canada
[6]. Beginning in 1981, cases of CWD were discovered in wild deer and elk on the eastern
slope of the Rocky Mountains and extending out on the plains following river valleys within
Colorado and Wyoming [7,8]. By 1996, CWD was first detected in Canada’s farmed elk, and
soon thereafter in the US elk industry, although it may have occurred in this industry far earlier.
More recently, CWD-infected ranched elk have been discovered in several other US states and
in South Korea [9] [10] raising international awareness and concern regarding CWD. The origin
of CWD remains an enigma.
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Epidemiology and disease management
Based on published and unpublished estimates, there may be well over 30 million cervids in
North America [11]. Prior to 2000, it was known that CWD had spread in part through transport
of captive deer and elk and movements of free-ranging animals, but its distribution was believed
to be limited to a 40,000km2 region of northern Colorado and southern Wyoming [1,8], with
a small number of cases in Canada [1,6]. CWD surveillance has recently been undertaken in
other states and provinces, and the results have been astonishing. CWD-infected cervids have
been reported in 12 additional states, extending east to New York and West Virginia, as well
as in 2 Canadian provinces
(http://www.aphis.usda.gov/vs/nahps/cwd/cwd-distribution.html;http://www.nwhc.usgs.gov/
disease_information/chronic_wasting_disease/north_america_CWD_map.jsp) (Fig. 2). The
distribution pattern is not in contiguous zones consistent with natural movement of free-ranging
animals, but instead concentrated in focal hotspots of varied size separated by large distances
(Fig. 2). Wisconsin has dense white-tailed deer populations (15–20 deer/km2) with a
prevalence of up to 13% of the male deer in some regions [12]. The origins of these recent
outbreaks remain under investigation, but in some cases spillover from infected game farms
seems a plausible explanation. The appearance of CWD in wild cervids presents significant
challenges to disease control or eradication due to (i) the extensive geographic range of North
American deer and elk, (ii) the logistical difficulty in applying ante-mortem diagnostic tests
such as tonsil biopsy [13], and (iii) the inability to rid the environment of potential prion
contaminated excreta.

CWD surveillance in Europe has been more limited, however some countries such as Germany
have conducted an active surveillance program. In Germany, a total of 7300 captive and free-
ranging cervids were tested for CWD with no sign of infection [14]. Reindeer or caribou
(Rangifer tarandus), from North America or Northern Europe respectively, have a highly
homologous prion sequence compared with mule deer, thus are likely susceptible to CWD.
Other European cervids such as moose and red deer (Cervus elaphus) are also expected to be
CWD-susceptible.

CWD infects free-ranging animals, creating an enormously complex situation for controlling
disease spread, particularly in light of our poor understanding of specific transmission routes
and susceptibility of non-cervid species. In addition, prion-infected deer and elk will be
consumed by scavengers and other carnivores, including mountain lions, foxes, raccoons,
coyotes, as well as eagles and vultures. Domestic ruminants and other herbivores are likely
exposed through CWD contaminated grazing areas, and conversely, wild ruminants are likely
exposed to sheep scrapie. Species known to be susceptible to CWD by an extreme and unnatural
exposure route, intracerebral inoculation, include ferrets [15], raccoons [16], other ruminants
(discussed below), and squirrel monkeys [17]. Studies are ongoing to determine whether
mountain lions (Puma concolor) are susceptible (M. Miller, pers. communic. and [18]).

Transmission among cervids
Of all the mammalian prion diseases, CWD is likely the most efficiently transmitted. In dense
free-ranging deer populations, CWD prevalence can reach as high as 30%, however in captive
herds, prevalence can climb to nearly 100% [2]. How is CWD transmitted with such efficiency?
This question is arguably one of the biggest conundrums in the CWD field, and hypotheses
range from spread via direct contact to exposure through grazing in areas contaminated by
prion-infected secretions, excretions (saliva, urine, feces), tissues (placenta), or decomposed
carcasses. Indeed, Miller et al. have shown that CWD-infected carcasses allowed to decay
naturally in confined pastures can lead to CWD infections in captive deer [19]. Perhaps multiple
exposure pathways can lead to an infection, nevertheless, horizontal spread of CWD is clearly
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occurring [20] and vertical transmission cannot be excluded. Conceivably the abundant
PrPSc in tonsils and Peyer’s patches [4] contributes to PrPSc shedding in saliva or feces.
Nonetheless, environmental prion contamination underscores the difficulties of CWD
eradication, a goal which is unlikely to be met for free-ranging cervid populations with the
available management techniques. Indeed, CWD eradication is not a stated management goal
for all western states.

Inflammation may increase the risk of prion shedding in cervids. In prion-infected mice,
follicular inflammation in the kidney directs prions to accumulate within lymphoid follicles
[21] and intriguingly, leads to prion excretion into the urine of infected mice [22]. Even in
natural sheep scrapie cases, follicular mastitis results in prion accumulation in the mammary
gland [23]. It remains to be seen whether scrapie prions are then shed into the milk to infect
nursing lambs. Because deer and elk also have a widespread prion assemblage within lymphoid
tissues, it seems plausible that follicular inflammation may also lead to CWD prion build-up
in nonlymphoid organs, potentially shifting shedding routes. It is unknown whether other types
of inflammation, such as the granulomatous inflammation in the intestine seen in Johne’s
disease (Mycobacterium avium subsp. paratuberculosis) (affects ruminants, including deer and
elk) or parasitic inflammation could lead to or perhaps increase prion excretion by fecal routes.

Recent studies of prion disease in hamsters indicate the potential for prion shedding via saliva
[24]. In hamsters intracerebrally (ic) exposed to scrapie, prions are transported centrifugally
from brain to the tongue, and PrPSc deposits in muscle, nerve, taste buds, and epithelium,
serving as a large potential reservoir for continual PrPSc shedding into saliva. In addition,
PrPSc has been detected in the tongues of 7 of 10 sheep naturally infected with scrapie using
both western blotting and immunohistochemistry techniques [25]. However, the tongue of
CWD infected deer and elk has not yet been investigated for the presence of PrPSc or prion
infectivity. Nevertheless, CWD-infected tonsils contain abundant PrPSc (Fig. 1) [26] and may
also serve as a source for prion shedding into saliva. In light of the commonly shared salt licks
and water sources in captivity, as well as licking behaviors of deer and elk, PrPSc transmission
via saliva should be considered as suspect.

Transmission to livestock
The capacity for CWD transmission to other species is clearly an area of great concern since
potentially CWD-infected free-ranging animals are co-habitating with domestic ruminants.
However, data on the risk for other wildlife species or domestic ruminants contracting the
disease is steadily accumulating. Cattle have been challenged with CWD by 3 routes: (i)
intracerebral, (ii) oral, and (iii) via contact exposure to CWD-infected mule deer (co-habitation)
[25, M. Miller, pers. communic]. After 6 years, only cattle challenged by ic inoculation have
developed disease. Five of thirteen animals (38%) developed prion infection after an incubation
period of 2–5 years [27]. Secondary passage of the cattle CWD led to a decrease in incubation
period to ~16 months with 100% attack rate (n=6) [28]. Perhaps surprisingly, cattle did not
develop a spongiform encephalopathy, although PrPSc was clearly detected in brain by
immunohistochemistry and Western blot. By comparison, ic sheep scrapie infection in cattle
resulted in 100% of cattle developing neurologic disease with PrPSc deposits in the brain (9/9)
[29]. A targeted surveillance of 262 older cattle from a CWD endemic area in Colorado did
not reveal any indication of a TSE [30].

Sheep are also susceptible to CWD after intracerebral inoculation [2], but have not yet been
challenged by oral routes. One goat developed TSE six years after CWD inoculation and
showed signs of intense pruritis and weight loss [6]. Elk have been challenged with sheep
scrapie, and developed a spongiform encephalopathy with PrPSc in the brain detected by
immunohistochemistry and western blot. Intriguingly, the histologic lesions and PrPSc deposits
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in the brain were indistinguishable from CWD in cervids [31]. As far as we know, deer have
not been directly challenged with sheep scrapie, however this experiment may be interesting
and at least addresses whether sheep scrapie could be an origin for deer CWD.

CWD and human susceptibility
Several million deer and elk hunters consume venison in the US and Canada and there is no
doubt that people have been exposed to CWD. Human susceptibility to CWD is still unclear,
although we can be somewhat reassured in that there have been no large scale outbreaks with
hundreds of human TSE cases in Colorado and Wyoming, where CWD has existed for decades.
That said, diagnosis of potential new TSE strains has been hampered in that, up until recently,
autopsies were not performed on suspect human TSE cases in many states due to biosafety
concerns. This indicates that clinical TSE diagnoses in humans were not confirmed, nor was
any strain typing done to look for the appearance of potentially subtle or unusual pathological
or biochemical phenotypes of a new TSE strain. Fortunately, the autopsy rate for suspect cases
is improving. At the National Prion Disease Pathology Surveillance Center at Case Western
Reserve University (Cleveland, Ohio), CJD suspect cases are studied and classified by CJD
subtype. Thus far, twenty-seven CJD patients who regularly consumed venison were reported
to the Surveillance Center, however there have been no unusual or novel prion subtypes
indicating the appearance of a new prion strain. [11,32]

Other indirect studies of human susceptibility to CWD, although limited in number, suggest
that the risk is low. In biochemical conversion studies, Caughey et al. showed that the efficiency
of CWD to convert recombinant human PrP into amyloid fibrils was low, but similar to that
of both BSE and scrapie fibrils to do the same [33]. Recently Xie et al. have compared
histopathology and PrPSc biochemical characteristics from deer and elk with that of humans
with sporadic CJD cases that are methionine homozygous at codon 129 [34]. The PrPSc form
is cleaved by proteinase-K at different sites depending on the conformation of the protein so
can be used to aid determination of whether the PrPSc conformation is similar. For CWD, the
unglycosylated PK-resistant PrPSc migrated at 21 kDa, similar to sCJD (MM1 subtype), the
PK cleavage site was the same, occurring at residues 78 and 82 as assessed by N-terminal
sequencing, and the conformational stability also showed no significant difference between
elk CWD and sCJD MM1 cases. However, there were distinct glycoform patterns exhibited
by two dimensional gel electrophoresis, suggesting that the elk CWD and human sCJD MM1
strains differ, although strain features, including histologic profile, target organs, and
glycoform patterns, will not necessarily remain the same upon crossing species barriers [15,
35,36].

Kong et al. studied the question of human susceptibility to CWD by inoculating transgenic
mice expressing human PrP or elk PrP with elk CWD. Whereas the elk PrP expressing mice
developed disease after only 118–142 days post-inoculation, human PrP expressing mice
(129M) did not develop any features of TSE after >657 or >756 days [11].

Cervid prion genetics
The deer and elk primary protein structures are highly conserved as seen in other mammals.
There are four particularly intriguing features of the deer and elk prion gene. First, a
polymorphism at codon 225 (S/F) may influence CWD susceptibility. When comparing the
frequency of genotypes among CWD negative and positive free-ranging mule deer (n=1482),
the odds that a CWD-infected animal was 225SS was 30 times greater when compared to 225SF
[37].

Second, elk have a polymorphism at codon 132 (M/L) of Prnp, corresponding to polymorphic
codon 129 (M/V) in humans. Elk expressing 132MM and 132ML Prnp were reported to be
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overrepresented among elk with CWD when compared to uninfected controls [38], and 132LL
elk experimentally infected with CWD have resisted infection for at least 4 years, whereas
132MM or 132ML elk (n=2 each) developed terminal clinical prion disease by 23 or 40 months
post-inoculation, respectively, confirmed by immunohistochemistry and western blot for
PrPSc [39].

Third, white-tailed deer also have Prnp polymorphisms which may affect CWD susceptibility.
When the allelic frequencies from CWD-positive and CWD-negative free-ranging, Wisconsin
white-tailed deer were compared, a G96S and a Q95H polymorphism were linked to a reduced
susceptibility to CWD [40].

A fourth interesting feature of deer and elk prion genetics from an evolutionary perspective is
the pseudogene which has been described in mule deer [41] and white-tailed deer [40,42]. The
pseudogene is suspected to be a processed retrotransposon, since it lacks introns and is flanked
by direct repeats. In WTD, the pseudogene encodes five or six octapeptide repeats [42]. At
residue 138, the Prnp functional and pseudogene diverge, encoding a serine or asparagine,
respectively [42]. Neither Old World Rocky Mountain elk nor New World moose possess the
pseudogene, perhaps indicating that the Prnp pseudogene arose after evolutionary radiation of
Odocoileus in the New World [42].

Cervid PrP structure
The structure of the elk prion protein has been solved by NMR analysis of recombinant elk
PrP [43] (Fig. 3). When the elk PrP structure is compared to human or bovine PrP structures,
the global architecture is nearly identical. However, intriguingly, the elk PrP possesses an
extremely well-defined loop connecting the 2nd alpha helix and beta sheet (amino acids 166–
175), whereas the homologous region is flexibly disordered in human and bovine PrPC. This
loop region has been studied in detail in the laboratory of Kurt Wüthrich, as there is an
outstandingly high incidence of nonconservative species variation and the loop is thought to
provide structural insights into species barriers for prion disease [44]. Further structural studies
in 2 mutant mouse PrP variants derived from the elk PrP primary structure, mPrP[N174T] and
mPrP[S170N, N174T], have confirmed that the defined loop in the elk is due to 2 amino acid
exchanges, as the mPrP[S170N, N174T] has the conformationally identical rigid loop of the
elk. Whether this loop region confers any TSE susceptibility or pathologic consequences
remains to be established.

Structural differences clearly influence species susceptibility, a feature well known for sheep
scrapie where susceptibility is heavily influenced by genotype at codons 136 (V/A), 154 (H/
R), 171 (Q/R) [45]. One proposed etiology of prion disease is based on a natural propensity
for PrP to assume beta-sheet-rich conformations, in combination with a failure to prevent the
accumulation of the beta-rich isoform, thereby ultimately leading to aggregated PrP [46,47].
Interestingly, the amyloidogenic site of the yeast prion protein, Sup35, has the same amino
acids as in the loop region of elk PrP, only the sequence order is different, but possibly suggests
an inherent propensity for a beta-rich conformation with these particular amino acids [48].
Based on this unusual rigid structural feature of the elk PrP, it is tempting to speculate that the
isolated geographic foci of CWD outbreaks across the U.S. and Canada may be due to increased
risk for a sporadic disease that can then spread horizontally. At least such possibilities should
remain open to discussion. Another possibility for the isolated outbreaks would be the
undetected spread of CWD through commerce of captive cervids.

Clinical disease and lesions in natural cases
Deer and elk with CWD show subtle signs of disease, characterized by weight loss, isolation
from the herd, hypersalivation, polydipsia/polyuria, frequent regurgitation ± esophageal
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distension, and rarely ataxia [49] (Fig. 4). The clinical signs are nonspecific and difficult to
detect in early stages except by those working daily with the animals. In one report, a captive
herd of 133 white-tailed deer was discovered with 50% CWD positive in brain or lymphoid
tissue, though no clinical signs were noted by the landowner or hunters [42]. The clinical course
varies from several weeks to up to many months [50].

Necropsy findings include subacute to chronic bronchopneumonia (likely due to aspiration),
froth or watery rumen contents (often containing sand), abomasal or omasal ulcers, serous
atrophy of bone marrow and pericardial fat, enlarged adrenal glands, and muscle atrophy [7].

Histopathologic lesions in the brain are similar to those described for BSE in cattle and scrapie
in sheep and goats: perikaryonic neuronal vacuoles, microcavitation of gray matter,
astrogliosis, neuronal degeneration and loss, and PrPSc positively labeled prion deposits and
plaques. Target areas for severe spongiform change included olfactory bulb and stria, septal
nuclei, thalamus, supraoptic and paraventricular nuclei, tegmental nuclei, and within the
medulla oblongata, neurons of the reticular formation, as well as nuclei from the hypoglossal,
vagal, medial and lateral cuneatus, and spinal tract of the trigeminal nerve [4,7,50].
Neuropathology varies slightly between deer and elk: elk have more severe lesions in the
thalamus and in some white matter areas [50]. Congo red bifringent, PAS-positive amyloid
plaques have been seen in deer brain but not elk [50].

Pathogenesis
Transmission of CWD into deer and elk demonstrated CWD as a prion disease, with
spongiform change and PrP amyloid fibrils in the brain of inoculated animals [2,6]. Oral CWD
infection of mule deer fawns indicates that PrPSc appears at early timepoints in the
retropharyngeal lymph node, tonsil, and Peyer’s patches by 3 months post feeding [51]. At
terminal stages of disease, PrPSc accumulates in part in the intestinal plexi and vagus nerve,
although the timing of prion infection of ganglia and nerves is not known [52].

CWD is one of several prion diseases in which PrPSc is typically disseminated throughout the
lymphoid system prior to the CNS. Thus, tonsil biopsy can be used to diagnose CWD ante-
mortem, although a negative tonsil biopsy does not rule out CWD infection as not all follicles
are necessarily positive [51,53] and not all CWD cases have a lymphoid phase of infection.
This scenario is seen particularly in elk, where 28/226 CWD positive elk in one study did not
have detectable PrPSc in the lymphoid system [54]. PrPSc in lymphoid tissue co-localizes with
follicular dendritic cell (FDC) and tingible body macrophage markers [55], as seen with natural
sheep scrapie and experimental mouse scrapie [56,57]. In mouse scrapie models, C1q is
essential for peripheral PrPSc replication, and C1q deficiency leads to a marked delay in
incubation period, suggesting that the classical complement cascade is an important early step
in prion pathogenesis [58,59]. The mechanism by which C1q interacts with PrPSc and the
connection with accumulation on FDCs is unresolved, but may also have relevance for CWD
pathogenesis.

Early stages of oral uptake of prions across the intestinal mucosa of sheep have been recently
examined in greater detail by Jeffrey et al [60]. Loops of intestine were isolated and inoculated
with prions. PrPSc was detected in the dilated villous lacteals and submucosal lymphatics by
3 hours post-inoculation, within dendritic-like cells in the draining lymph node by 24 hours,
and in the Peyer’s patches only by 30 days post-inoculation. Uptake was not affected by the
Prnp genotype of the sheep. It is not known precisely when and how prion infectivity enters
nerves, or whether PrP amplication in the Peyer’s patches is a prerequisite for nerve entry,
although Mabbott et al. have shown in mice that prion infection of Peyer’s patches is irrelevant
to CNS infection as early as 14 days post-oral challenge [61].
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In studies by Spraker et al., PrPSc accumulation in the brain has been characterized in great
detail in MD, WTD, and elk, both captive and free-ranging [4,7,54]. Experimental CWD time
course studies are underway but have not yet been published to characterize the pathogenesis,
therefore it remains unclear when and how PrPSc reaches the brain and spinal cord. However,
natural CWD cases in MD have been classified by PrPSc and spongiform encephalopathy
distribution throughout the brain [62]. PrPSc consistently accumulated in the brainstem,
particularly the dorsal motor nucleus of the vagus. Other organs that accumulate PrPSc in mule
deer include adrenal glands, pancreatic islets, and pituitary [52].

New tools for CWD investigation
A big leap forward for CWD research occurred with the development of cervid PrP expressing
transgenic mice (CerTgPrP), recently been described by Browning et al. to be highly
susceptible to CWD infection [5]. Mice develop plaques in the brain resembling CWD in
cervids. Thus far, prion infectivity in various organs of cervids has not yet been examined in
detail by bioassay, however, CWD infectivity has been recently shown in skeletal muscle of
naturally CWD-infected deer [63]. A second cervid PrP transgenic mouse has been described
by Kong et al. [11].

A CWD-susceptible cell line has been developed derived from cervid brain fibroblasts, and
has been used to screen inhibitors of CWD infection, e.g., pentosan polysulfate [64]. This is
the first CWD specific assay introduced for screening compounds that inhibit CWD
propagation. Perhaps these cells will also be useful to assess CWD infectivity.

CWD strains?
In sheep scrapie, many strains of TSEs exist, including an ‘atypical scrapie’ known as Nor98
[65]. For CWD, the existence of multiple strains is unclear. Transgenic mice overexpressing
murine PrP and inoculated with CWD develop a mixture of pathological and biochemical
phenotypes which may suggest the existence of multiple strains, although the phenotypic
variability could also be due to strain adaptation (CJS and AA, unpublished data). Safar et al.
reported differing conformational characteristics for CWD from WTD and elk using a
conformation dependent assay (CDI), also suggestive of strain differences [66].

In light of the discussion herein, one aspect of CWD research is crystal clear: there are many
unsolved mysteries in this disease of wild animals. The sooner we understand basic disease
factors such as CWD origins, mechanisms of spread, and species susceptibility, the more
specifically we can target prevention and management programs.
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Figure 1.
Immunohistochemistry of mule deer brain and lymphoid tissue using anti-PrP antibody
F99/97.6.1 [67]. PrPSc deposits in the brainstem and tonsil from a CWD-infected mule deer
(panels b, d), but not in an uninfected deer (panels a, c).
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Figure 2.
Map depicting the CWD cases detected in North America. (Map kindly provided by the
National Wildlife Health Center).
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Figure 3.
Superposition of the mean NMR structures of the polypeptide segment 125–229 (C) and 165–
172 (D) in ePrP(121–230) (red) and mPrP(121–230) (blue). A spline function was drawn
through the C positions. The radius of the cylindrical rods representing the polypeptide chains
is proportional to the mean backbone displacement per residue (XX), as evaluated after
superposition for best fit of the atoms N, C, and C′ in the 20 energy-minimized conformers
used to represent the NMR structures [43,68]. Figure provided by Simone Hornemann. Data
published in reference [43,68].
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Figure 4.
Mule deer with clinical signs of CWD including hypersalivation, a lowered head, emaciation,
and a dry, rough hair coat (panel a). A clinically normal control mule deer is shown for
comparison (panel b).
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