CORRESPONDENCE

Table 1	Summary of the fluorescence correlation	spectroscopy	measurements	using 10 μ M RITA
---------	---	--------------	--------------	-----------------------

Protein	Diffusion time \pm s.e.m. ^a	Change in diffusion time, percent
No protein	0.063 ± 0.011	—
GST-p53 dN(1–63)	0.356 ± 0.070	465
GST-p53 N(1–100)	0.259 ± 0.020	311
GST-p53(1–393)	0.287 ± 0.043	355
His-p53(1–393)	0.198 ± 0.007	214
His-p53(1–312)	0.111 ± 0.014	74
GST	0.076 ± 0.003	20
GST-EBNA2	0.073 ± 0.017	16

^aAll experiments were performed at least three times.

subject for future research.

Accession codes. BIND identifiers (http://bind.ca): 335735.

Vera Grinkevich¹, Natalia Issaeva¹, Shakil Hossain², Aladdin Pramanik² & Galina Selivanova¹

¹Microbiology and Tumor Biology Center and ²Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden. e-mail: galina.selivanova@mtc.ki.se

1. Issaeva, N. et al. Nat. Med. 10, 1321-1328 (2004).

PrP^{Sc} in mammary glands of sheep affected by scrapie and mastitis

To the editor:

Besides colonizing the central nervous system, the infectious agent of transmissible spongiform encephalopathies, termed prion, is predominantly associated with follicular dendritic cells (FDCs) of lymphoid tissues^{1,2}. Accordingly, PrPSc, a protease-resistant isoform of the host protein PrP^C representing the main prion constituent, is often detectable in spleen, tonsils, Peyer patches and lymph nodes of infected hosts.

Chronic inflammatory states are accompanied by local extravasation of B cells and other inflammatory cells, which may induce lymphotoxin-dependent maturation of ectopic FDCs. Consequently, scrapie infection of mice suffering from nephritis, hepatitis or pancreatitis induces unexpected prion deposits at the sites of inflammation³. This has raised con-

cerns that analogous phenomena might occur

in farm animals. We have investigated this question in a flock of 818 Sarda sheep held in the Sassari region of Italy for production of wool and human foods. The European Surveillance Plan for Transmissible Spongiform Encephalopathies mandates the removal of all sheep of scrapie-susceptible genotypes in scrapie-infected flocks.Of the 818 sheep, 261 had Prnp alleles⁴ that conferred susceptibility to prion disease. Of the latter, seven had clinically overt scrapie with PrPSc in brain, lymph nodes and tonsil. All scrapie-sick sheep and 100 randomly chosen healthy sheep were killed, and mammary glands were analyzed histologically. Of these, 10 sheep had lymphocytic mastitis, and four had coincident mastitis and scrapie. Using western blots, immunohistochemistry and histoblots, we detected PrPSc in mammary glands of all

four clinically scrapie-sick sheep with mastitis (**Fig. 1a**,**b**), but not in noninflamed mammary glands from presymptomatic or scrapie-sick sheep from the same (n = 14) or a different flock (n = 1), nor in inflamed mammary glands of scrapie-uninfected sheep (n = 2). Within the inflammatory mammary lesions, PrPSc was found to be associated with lymphoid follicles by immunofluorescent labeling and by paraffin-embedded tissue (PET) blotting (Fig. 1c). PrPSc colocalized predominantly with CD68+ macrophages and FDCs within inflamed mammary glands (Fig. 2a).

We then surveyed a second Sarda flock (272 sheep) located 30 km away from the flock described above. One sheep was found to be

Figure 1 Prion protein in inflamed mammary glands. (a) Western blots with a PrP-specific antibody. Lanes 1-3, 9-11, 14-16 from left: native and proteinase K (PK)-digested brain homogenates (diluted 1/1,400) from a scrapie-infected (Scr+) and a scrapie-free sheep (Scr⁻). Lanes 6–8: mammary glands from a scrapie-free sheep with follicular mastitis (Scr-, mast+), a scrapie-positive sheep from a flock with neither MVV seropositivity nor mastitis (Scr+, mast-), and a sheep with neither mastitis nor scrapie (Scr-, mast-). Each one of five scrapieinfected sheep with mastitis had mammary PrPSc (lanes 4, 5, 12, 13, and 17). Nonscrapie-infected brain and mammary gland extracts showed no PrPSc upon PK digestion (lanes 3, 6–8, 11 and 16). (b) Mammary gland micrographs from MVV-seropositive sheep with mastitis and coincident scrapie (Scr⁺), or with mastitis but no scrapie (Scr⁻). Lymphoid follicles are adjacent to milk ducts (md). Immunofluorescence stains show abundant PrP deposits within mammary lymphoid follicles (arrow) from scrapie-positive but not from scrapie-free sheep. Scale bars, 100 µm. (c) PK-treated paraffin-embedded tissue blots of mammary gland sections show punctate PrPSc deposits colocalizing with lymphoid follicles in scrapie-infected (Scr⁺), but not in scrapiefree (Scr-) sheep with mastitis. Scale bars, 200 µm.

CORRESPONDENCE

© 2005 Nature Publishing Group http://www.nature.com/naturemedicine

Figure 2 Mammary PrPSc localizes to macrophages and FDCs. (a) Mammary gland from a sheep with coincident mastitis, MVV seropositivity and scrapie (sheep #732). Confocal laser scanning micrographs of lymphoid follicles immunostained for PrP (green), nuclear DNA (blue) and macrophages (red, top panels) or FDC (red, bottom panels). PrP^{Sc} associates with CD68⁺ macrophages and FDCs in scrapiepositive (Scr+, arrows) but not in scrapie-free sheep (Scr-). Scale bars, 6.3 µm (top) and 7.5 µm (bottom). (b) CD68⁺ macrophages (arrow) and degenerating leukocytes within milk ducts and in adjacent lymphoid follicles of an inflamed mammary gland, as well as in milk sediment (inset, arrowheads). Scale bar, 100 μm (mammary gland) or 20 μm (milk cells).

scrapie-sick and was killed: necropsy showed lymphofollicular mastitis and PrPSc in the brain and tonsil. Again, PrPSc was present in the mammary gland (Fig. 1a). These results indicate that coincidence of natural chronic inflammatory conditions and natural scrapie can expand the deposition of PrPSc to unexpected tissues of sheep.

By plotting western blot signals against serially diluted scrapie-infected brain and spleen, we determined that the median mammary PrPSc concentration was 0.1% of that of spleen and 0.05% of brain. But because mammary lymphoid follicles were stochastically distributed, local PrPSc loads varied markedly. Hence these figures may underestimate PrPSc in sites

of abundant follicles, and overestimate it in sites with few or no follicles.

Common causes of lymphofollicular mastitis in sheep include Maedi-Visna virus (MVV) and mycoplasma⁵. We could not culture mycoplasma from mastitic glands, whereas we found that four of the five sheep with scrapie and mastitis were seropositive for MVV and that the three scrapie-sick sheep without mastitis were seronegative for MVV. In the clinically healthy group, 7 of 10 sheep with mastitis, but only 32 of 90 sheep without mastitis, were seropositive for MVV. Hence, MVV seropositivity correlated with lymphoid follicular mastitis (Fisher exact test, P = 0.01) as reported previously^{6,7}.

MVV and related small-ruminant lentiviruses are endemic in most, if not all, European populations of small ruminants⁶. The above data suggest that common viral infections of small ruminants may enhance the spread of prions. MVV is found within mammary epithelial cells and macrophages⁸, and has been experimentally passed to lambs through milk⁹. Milk is believed to represent a major route of transmission for the natural spread of MVV⁵. The PrP deposits in CD68⁺ cells of mammary lymphoid follicles, in concert with the copious shedding of macrophages into milk of mastitic sheep (Fig. 2b)^{9,10}, raises the question whether coexistence of prion infection and inflammation in secretory organs may lead to prion contamination of secretes, and may represent a cofactor for horizontal prion spread within flocks.

ACKNOWLEDGMENTS

We thank J. DeMartini for discussions and B. Seifert for statistical analysis. This study was supported by grants of the European Union (Apopis), the Swiss National Foundation, the National Competence Center for Research on Neural Plasticity and Repair (to A.A.), Istituto Zooprofilattico Sperimentale della Sardegna 001/02 (to C.L.), US National Institutes of Health K08-AI01802 and the Foundation for Research at the Medical Faculty, University of Zürich (to C.J.S.) and the United States National Prion Research Program (to C.J.S. and A.A.).

Ciriaco Ligios^{1,6}, Christina J Sigurdson^{2,6}, Cinzia Santucciu^{1,6}, Gabriella Carcassola³, Giuseppe Manco², Massimo Basagni⁴, Caterina Maestrale¹, Maria Giovanna Cancedda⁵, Laura Madau¹ & Adriano Aguzzi²

¹Istituto Zooprofilattico Sperimentale della Sardegna, I-07100 Sassari, Italy. ²UniversitätsSpital Zürich, Institute of Neuropathology, Department of Pathology, CH-8091 Zürich, Switzerland. ³Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Sez. di Microbiologia e Immunologia, Università degli Studi di Milano, I-20133 Milano, Italy. ⁴Prion DGN Srl, I-20017 Rho, Italy. ⁵Istituto Zootecnico Caseario della Sardegna, I-07040 Olmedo, Italy. 6 These authors contributed equally to this work. e-mail: adriano@pathol.unizh.ch

- Mabbott, N.A., Mackay, F., Minns, F. & Bruce, M.E. 1. Nat. Med. 6, 719-720 (2000).
- 2. Montrasio, F. et al. Science 288, 1257-1259 (2000).
- Heikenwalder, M. et al. Science 307, 1107-1110 3. (2005).
- Goldmann, W. et al. Proc. Natl Acad. Sci. USA 87, 2476-2480 (1990).
- Pepin, M., Vitu, C., Russo, P., Mornex, J.F. & Peterhans, E. Vet. Res. 29, 341-367 (1998).
- Peterhans, E. et al. Vet. Res. 35, 257-274 (2004). 6.
- de Andres, D. et al. Vet. Microbiol. 107, 49-62 7. (2005).
- Carrozza, M.L., Mazzei, M., Bandecchi, P., Arispici, M. & Tolari, F. J. Virol. Methods 107, 121-127 (2003).
- Preziuso, S. et al. Vet. Microbiol. 104, 157-164 (2004)
- 10. Lerondelle, C. & Ouzrout, R. Dev. Biol. Stand. 72, 223-227 (1990).